Prime and Composite Numbers Prime Numbers - Advanced Prime Number Lists. 13009 13033 13037 13043 13049 13063 13093 13099 13103 13109
87251 87253 87257 87277 87281 87293 87299 87313 87317 87323
96137 96149 96157 96167 96179 96181 96199 96211 96221 96223
And if n is 20, the output should be "2, 3, 5, 7, 11. This include the following: Of the form 3n, where is Mills' constant. 38723 38729 38737 38747 38749 38767 38783 38791 38803 38821
A palindromic prime is a number that is simultaneously palindromic and prime. 1 How many 5 digit prime numbers are there? 79757 79769 79777 79801 79811 79813 79817 79823 79829 79841
7727 7741 7753 7757 7759 7789 7793 7817 7823 7829
23, 29, 59, 61, 67, 71, 79, 83, 109, 137, 139, 149, 193, 227, 233, 239, 251, 257, 269, 271, 277, 293, 307, 311, 317, 359, 379, 383, 389, 397, 401, 419, 431, 449, 461, 463, 467, 479, 499 (OEIS:A063980), 2, 17, 257, 1297, 65537, 160001, 331777, 614657, 1336337, 4477457, 5308417, 8503057, 9834497, 29986577, 40960001, 45212177, 59969537, 65610001, 126247697, 193877777, 303595777, 384160001, 406586897, 562448657, 655360001 (OEIS:A037896). 97327 97367 97369 97373 97379 97381 97387 97397 97423 97429
55219 55229 55243 55249 55259 55291 55313 55331 55333 55337
70823 70841 70843 70849 70853 70867 70877 70879 70891 70901
5801 5807 5813 5821 5827 5839 5843 5849 5851 5857
1 is neither prime nor composite. 83401 83407 83417 83423 83431 83437 83443 83449 83459 83471
94693 94709 94723 94727 94747 94771 94777 94781 94789 94793
The name "emirp" is obtained by reversing the word "prime". 11549 11551 11579 11587 11593 11597 11617 11621 11633 11657
11447 11467 11471 11483 11489 11491 11497 11503 11519 11527
61211 61223 61231 61253 61261 61283 61291 61297 61331 61333
37691 37693 37699 37717 37747 37781 37783 37799 37811 37813
are considered to be prime numbers. 8039 8053 8059 8069 8081 8087 8089 8093 8101 8111
Of the form 2u3v+1 for some integers u,v0. 5 is the only prime number to end in the digit 5 in decimal because all other numbers written with a 5 in the ones place are multiples of five, which makes it a 1-automorphic number. 22853 22859 22861 22871 22877 22901 22907 22921 22937 22943
10n+7: 7, 17, 37, 47, 67, 97, 107, 127, 137, 157, 167, 197, 227, 257, 277 (OEIS:A030432) 661 673 677 683 691 701 709 719 727 733
79397 79399 79411 79423 79427 79433 79451 79481 79493 79531
62791 62801 62819 62827 62851 62861 62869 62873 62897 62903
61339 61343 61357 61363 61379 61381 61403 61409 61417 61441
n 77983 77999 78007 78017 78031 78041 78049 78059 78079 78101
98321 98323 98327 98347 98369 98377 98387 98389 98407 98411
Identify prime and composite numbers from the following list. 103511 103529 103549 103553 103561 103567 103573 103577 103583 103591
24036583, 25964951, 30402457, 32582657, 37156667, 42643801, 43112609, 57885161 (OEIS:A000043), As of December2018[update], three more are known to be in the sequence, but it is not known whether they are the next: Input any value into our Find Prime Numbers Calculator and it will find all the primes up to and including your value. 13883 13901 13903 13907 13913 13921 13931 13933 13963 13967
95881 95891 95911 95917 95923 95929 95947 95957 95959 95971
78707 78713 78721 78737 78779 78781 78787 78791 78797 78803
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 2, 23, 37, 47, 53, 67, 79, 83, 89, 97, 113, 127, 131, 157, 163, 167, 173, 211, 223, 233, 251, 257, 263, 277, 293, 307, 317, 331, 337, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 439, 443, 449, 457, 467, 479, 487, 491, 499, 503, 509, 541, 547, 557, 563, 577, 587, 593, 607, 613, 631, 647, 653, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 839, 853, 863, 877, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997 (OEIS:A007510), 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193 (OEIS:A094133). Two examples of twin prime numbers are: (3, 5); here 3, 5 are prime numbers and 4 is the composite number between them. There are exactly fifteen two-sided primes: 2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397 (OEIS:A020994), (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), (197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313), (347, 349), (419, 421), (431, 433), (461, 463) (OEIS:A001359, OEIS:A006512). So the largest 5 digit no is 99999. There are a total of 168 prime numbers between 1 to 1000. 96821 96823 96827 96847 96851 96857 96893 96907 96911 96931
35407 35419 35423 35437 35447 35449 35461 35491 35507 35509
12409 12413 12421 12433 12437 12451 12457 12473 12479 12487
Primes p such that ap 1 1 (mod p2) for fixed integer a > 1. 67777 67783 67789 67801 67807 67819 67829 67843 67853 67867
28289 28297 28307 28309 28319 28349 28351 28387 28393 28403
92761 92767 92779 92789 92791 92801 92809 92821 92831 92849
The reverse of Jordan's 23, the No. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). 32833 32839 32843 32869 32887 32909 32911 32917 32933 32939
14713 14717 14723 14731 14737 14741 14747 14753 14759 14767
65519 65521 65537 65539 65543 65551 65557 65563 65579 65581
Before I show you the list, here's how to generate a list of prime numbers of your own using a few popular languages. Creating Prime Number List of First N Prime Numbers Using Python. 0 87643 87649 87671 87679 87683 87691 87697 87701 87719 87721
3 digit 4 digit 5 digit 6 digit 1-10 1 - 100 Random Hex Random Binary Combinations Random Strings. 3, 5, 7, 13, 17, 19, 23, 37, 47, 59, 61, 67, 71, 79, 89, 101, 103, 107, 109, 127, 151, 157, 163, 167, 191, 197, 199, 223, 229, 233, 239, 271, 277, 283, 293, 307, 311, 313, 331, 353, 373, 379, 383, 397 (OEIS:A046066). 69427 69431 69439 69457 69463 69467 69473 69481 69491 69493
5 Which is the nth prime number in this calculator? 47947 47951 47963 47969 47977 47981 48017 48023 48029 48049
with Need help with printing or saving? 18251 18253 18257 18269 18287 18289 18301 18307 18311 18313
121021, 121151, 150151, 151051, 151121, 180181, 180811, 181081 (OEIS:A134996). 8n+7: 7, 23, 31, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263 (OEIS:A007522) Number List 1 - 10 Number List 1 - 20 Number List 1 - 30 Number List 1 - 40 Number List 1 - 50 Number List 1 - 60 Number List 1 - 70 Number List 1 - 80 Number List 1 - 90 Number List 1 - 100 Number List 1 - 1000 (1 thousand) Number List 1 - 10000 (10 thousand) Number List 1 - 100000 (100 thousand) Number List 1 - 1000000 (1 million) . - Martin R. Apr 12, 2019 at 15:14. 58727 58733 58741 58757 58763 58771 58787 58789 58831 58889
31723 31727 31729 31741 31751 31769 31771 31793 31799 31817
3 17321 17327 17333 17341 17351 17359 17377 17383 17387 17389
44647 44651 44657 44683 44687 44699 44701 44711 44729 44741
Eleven has just two factors: 1 and 11. prime and tell you all the factors of that number. By clicking Accept All, you consent to the use of ALL the cookies. 42083 42089 42101 42131 42139 42157 42169 42179 42181 42187
7649 7669 7673 7681 7687 7691 7699 7703 7717 7723
The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. The next one to see are the prime numbers of 3 digits. 67391 67399 67409 67411 67421 67427 67429 67433 67447 67453
The cookies is used to store the user consent for the cookies in the category "Necessary". You can also use our prime number calculator to show all the primes within a given range. 10000 The smallest five-digit number = 10000. 63131 63149 63179 63197 63199 63211 63241 63247 63277 63281
27239 27241 27253 27259 27271 27277 27281 27283 27299 27329
To generate a list of the first N prime numbers in Python, you can create your own function and loop until you have N prime numbers. The primes of the form 32n + 1 are related. They are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149]. 14083 14087 14107 14143 14149 14153 14159 14173 14177 14197
By definition a 10 digit prime is not "safe" of course. 45413 45427 45433 45439 45481 45491 45497 45503 45523 45533
(OEIS A068652 ). 20161 20173 20177 20183 20201 20219 20231 20233 20249 20261
27953 27961 27967 27983 27997 28001 28019 28027 28031 28051
1 - Just search on any (sufficiently large) public list of prime numbers. 7109 7121 7127 7129 7151 7159 7177 7187 7193 7207
82787 82793 82799 82811 82813 82837 82847 82883 82889 82891
31847 31849 31859 31873 31883 31891 31907 31957 31963 31973
45317 45319 45329 45337 45341 45343 45361 45377 45389 45403
80651 80657 80669 80671 80677 80681 80683 80687 80701 80713
40693 40697 40699 40709 40739 40751 40759 40763 40771 40787
We also use third-party cookies that help us analyze and understand how you use this website. 52937 52951 52957 52963 52967 52973 52981 52999 53003 53017
8p 1 1 (mod p2): 3, 1093, 3511 So there is always the search for the next "biggest known prime number". The list of primes p for which the period length of the decimal expansion of 1/p is unique (no other prime gives the same period). 50153 50159 50177 50207 50221 50227 50231 50261 50263 50273
89329 89363 89371 89381 89387 89393 89399 89413 89417 89431
86869 86923 86927 86929 86939 86951 86959 86969 86981 86993
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233, 239, 251, 281, 293, 359, 419, 431, 443, 491, 509, 593, 641, 653, 659, 683, 719, 743, 761, 809, 911, 953 (OEIS:A005384). 22343 22349 22367 22369 22381 22391 22397 22409 22433 22441
3187 3191 3203 3209 3217 3221 3229 3251 3253 3257
22p 1 1 (mod p2): 13, 673, 1595813, 492366587, 9809862296159 (OEIS:A298951) p 36389 36433 36451 36457 36467 36469 36473 36479 36493 36497
Hit the enter button to submit. The first few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. 85037 85049 85061 85081 85087 85091 85093 85103 85109 85121
So 6 is composite. 8681 8689 8693 8699 8707 8713 8719 8731 8737 8741
Do you know how old you arein weeks? 90499 90511 90523 90527 90529 90533 90547 90583 90599 90617
46559 46567 46573 46589 46591 46601 46619 46633 46639 46643
13p 1 1 (mod p2): 2, 863, 1747591 (OEIS:A128667)[20] The first few (base-10) palindromic primes are 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, . 19913 19919 19927 19937 19949 19961 19963 19973 19979 19991
75721 75731 75743 75767 75773 75781 75787 75793 75797 75821
39139 39157 39161 39163 39181 39191 39199 39209 39217 39227
p 90619 90631 90641 90647 90659 90677 90679 90697 90703 90709
Largest known prime number. This is a list of articles about prime numbers. 467 479 487 491 499 503 509 521 523 541
The limit on the input number to factor is less than 10,000,000,000,000 (less than 10 trillion or a maximum of 13 digits). 24671 24677 24683 24691 24697 24709 24733 24749 24763 24767
95327 95339 95369 95383 95393 95401 95413 95419 95429 95441
Tweet a thanks, Learn to code for free. 67883 67891 67901 67927 67931 67933 67939 67943 67957 67961
Not a single prime number greater than 5 ends with a 5. This website uses cookies to improve your experience while you navigate through the website. 9p 1 1 (mod p2): 2, 11, 1006003 71119 71129 71143 71147 71153 71161 71167 71171 71191 71209
89633 89653 89657 89659 89669 89671 89681 89689 89753 89759
36523 36527 36529 36541 36551 36559 36563 36571 36583 36587
28163 28181 28183 28201 28211 28219 28229 28277 28279 28283
Our Prime Number Charts page is similar to the prime number lists on this page but contains charts 92251 92269 92297 92311 92317 92333 92347 92353 92357 92363
104087 104089 104107 104113 104119 104123 104147 104149 104161 104173
10273 10289 10301 10303 10313 10321 10331 10333 10337 10343
44281 44293 44351 44357 44371 44381 44383 44389 44417 44449
79627 79631 79633 79657 79669 79687 79691 79693 79697 79699
25703 25717 25733 25741 25747 25759 25763 25771 25793 25799
{\displaystyle p} 90731 90749 90787 90793 90803 90821 90823 90833 90841 90847
The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d. 2n+1: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53 (OEIS:A065091) 26993 27011 27017 27031 27043 27059 27061 27067 27073 27077
The prime numbers table lists the first 1000 prime numbers from 2 to 8011. {\displaystyle F_{p-\left({\frac {p}{5}}\right)}} 92857 92861 92863 92867 92893 92899 92921 92927 92941 92951
17977 17981 17987 17989 18013 18041 18043 18047 18049 18059
38651 38653 38669 38671 38677 38693 38699 38707 38711 38713
88261 88289 88301 88321 88327 88337 88339 88379 88397 88411
28591 28597 28603 28607 28619 28621 28627 28631 28643 28649
Subsets of the prime numbers may be generated with various formulas for primes. 58243 58271 58309 58313 58321 58337 58363 58367 58369 58379
74201 74203 74209 74219 74231 74257 74279 74287 74293 74297
77849 77863 77867 77893 77899 77929 77933 77951 77969 77977
27581 27583 27611 27617 27631 27647 27653 27673 27689 27691
87557 87559 87583 87587 87589 87613 87623 87629 87631 87641
Wikipedia also lists the twenty highest known prime numbers, only the four smallest on that list have fewer than three million digits.. For some while now, I have been wondering about the smaller prime numbers we haven't found. 23117 23131 23143 23159 23167 23173 23189 23197 23201 23203
2p 1 1 (mod p2): 1093, 3511 (OEIS:A001220) This has been used to compute that there are 1,925,320,391,606,803,968,923 primes (roughly 21021) below 1023. 72859 72869 72871 72883 72889 72893 72901 72907 72911 72923
79537 79549 79559 79561 79579 79589 79601 79609 79613 79621
62467 62473 62477 62483 62497 62501 62507 62533 62539 62549
4n+1: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137 (OEIS:A002144) 15413 15427 15439 15443 15451 15461 15467 15473 15493 15497
We have some great games for you to play in our Math Games e-books! A prime number is an integer, or whole number, that has only two factors 1 and itself. 52249 52253 52259 52267 52289 52291 52301 52313 52321 52361
Primes p for which, in a given base b, It was discovered in 2018 by Patrick Laroche of the Great Internet Mersenne Prime Search (GIMPS). 62921 62927 62929 62939 62969 62971 62981 62983 62987 62989
2, 3, 5, 7, 17, 29, 277, 367, 853, 14197, 43721, 1442968193, 792606555396977, 187278659180417234321, 66241160488780141071579864797 (OEIS:A074788). 27091 27103 27107 27109 27127 27143 27179 27191 27197 27211
So 9 is composite. 12037 12041 12043 12049 12071 12073 12097 12101 12107 12109
87337 87359 87383 87403 87407 87421 87427 87433 87443 87473
A palindromic prime (sometimes called a palprime) is a prime number that is also a palindromic number. 1597 1601 1607 1609 1613 1619 1621 1627 1637 1657
3823 3833 3847 3851 3853 3863 3877 3881 3889 3907
95987 95989 96001 96013 96017 96043 96053 96059 96079 96097
88681 88721 88729 88741 88747 88771 88789 88793 88799 88801
91691 91703 91711 91733 91753 91757 91771 91781 91801 91807
77731 77743 77747 77761 77773 77783 77797 77801 77813 77839
62081 62099 62119 62129 62131 62137 62141 62143 62171 62189
(5, 7); here 5, 7 are prime numbers and 6 is the composite number between them. 75539 75541 75553 75557 75571 75577 75583 75611 75617 75619
66509 66523 66529 66533 66541 66553 66569 66571 66587 66593
Therefore, the total number of combinations possible are 10 10 10 10 10 = 1,00,000. For more information on primes see https://primes.utm.edu/
60821 60859 60869 60887 60889 60899 60901 60913 60917 60919
53453 53479 53503 53507 53527 53549 53551 53569 53591 53593
48413 48437 48449 48463 48473 48479 48481 48487 48491 48497
51503 51511 51517 51521 51539 51551 51563 51577 51581 51593
The probability of the existence of another Fermat prime is less than one in a billion. 11p 1 1 (mod p2): 71[20] 42293 42299 42307 42323 42331 42337 42349 42359 42373 42379
2,[9] 3, 7, 11, 29, 47, 199, 521, 2207, 3571, 9349, 3010349, 54018521, 370248451, 6643838879, 119218851371, 5600748293801, 688846502588399, 32361122672259149 (OEIS:A005479), 3, 7, 13, 31, 37, 43, 67, 73, 79, 127, 151, 163, 193, 211, 223, 241, 283, 307, 331, 349, 367, 409, 421, 433, 463, 487, 541, 577, 601, 613, 619, 631, 643, 673, 727, 739, 769, 787, 823, 883, 937, 991, 997 (OEIS:A031157), 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111, 162259276829213363391578010288127, 170141183460469231731687303715884105727 (OEIS:A000668).